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Abstract
Symmetric and asymmetric quantum channels which act on bipartite bosonic
states are considered. The linear dissipative channel and the quantum
teleportation channel are applied. The influences of the symmetric and
asymmetric quantum channels on bipartite Gaussian states are investigated
by means of the inseparability condition. Furthermore, quantum teleportation
and quantum dense coding of continuous variables performed by means of
two-mode squeezed-vacuum states under the influence of the noisy quantum
channels are discussed.

PACS numbers: 03.67.Hk, 03.67.−a, 03.67.Mn

1. Introduction

Quantum information processing provides the possibilities of novel information technology
such as quantum cryptography, quantum communication and quantum computation as well as
new insights on the principles of quantum mechanics [1, 2]. Entanglement between quantum
systems is one of the most important resources in quantum information processing. To
perform quantum communication such as quantum teleportation [3–6] and quantum dense
coding [7–11], a sender and a receiver must share quantum entanglement. When quantum
entanglement is shared by distant users, the influence of noisy quantum channels on the
quantum entanglement is inevitable. Noisy quantum channels cause decoherence and thus
they are obstacles to performing quantum communication with high performance. Since the
two modes of a bipartite quantum state are sent through noisy quantum channels to share
the entanglement, it is reasonable to consider that the quantum channel acting on one mode
of the bipartite state is different, in general, from that acting on the other mode. Then it
is important to investigate quantum communication under the influence of symmetric and
asymmetric quantum channels. In particular, it is interesting to ask whether asymmetry of
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quantum channels is good or not for sharing quantum entanglement and performing quantum
communication.

This paper investigates the influence of symmetric and asymmetric Gaussian quantum
channels on the entanglement of bipartite quantum states. In section 2, we briefly review
the two quantum channels considered in this paper. One is the linear dissipative channel and
the other is the quantum teleportation channel. In section 3, we discuss the inseparability
of bipartite Gaussian states transmitted through these quantum channels. In particular,
we focus our attention on the asymmetry of the quantum channels. In section 4, we
investigate quantum teleportation and quantum dense coding of continuous variables under
the influence of the asymmetric Gaussian channels. Concluding remarks are given in
section 5.

2. Symmetric and asymmetric quantum channels

This section introduces the linear dissipative channel and the quantum teleportation channel.
The Wigner function and the characteristic function of the output states of the quantum
channels are obtained. The results are used in the rest of this paper.

2.1. Linear dissipative channel caused by noisy environment

The time evolution of the quantum state ρ̂(t) of a bosonic system under the influence of a
noisy environment is determined by the quantum master equation [12]

∂

∂t
ρ̂(t) = κk

(
n̄

(th)
k + 1

)[
2âkρ̂(t)â

†
k − â

†
kâkρ̂(t) − ρ̂(t)â

†
kâk

]
+ κkn̄

(th)
k

[
2â

†
kρ̂(t)âk − âkâ

†
kρ̂(t) − ρ̂(t)âkâ

†
k

]
(1)

where âk and â
†
k are bosonic annihilation and creation operators of the kth mode (k = 1, 2).

The non-negative parameters κk and n̄
(th)
k appearing in equation (1) represent the relaxation

constant and the average photon number of the thermal noise. In equation (1), we have ignored
the term which represents the free time evolution since it is not important for our purpose.
Introducing the Wigner function W(z; t) of the quantum state ρ̂(t) by [13, 14]

W(z; t) = 2 e2|z|2
∫

d2α

π
〈−α|ρ̂(t)|α〉 e−2αz∗+2α∗z (2)

where |±α〉 is the Glauber coherent state and d2α stands for d(Re α) d(Im α), one can derive
the Fokker–Planck equation for the Wigner function W(z; t) [12] from equation (1) and can
obtain the general solution

W(z; t) =
∫

d2z′

π
Gk(z|z′; t)W(z′; 0) (3)

with

Gk(z|z′; t) = 1(
n̄

(th)
k + 1

2

)
(1 − e−2κkt )

exp

[
− |z − z′ e−κkt |2(

n̄
(th)
k + 1

2

)
(1 − e−2κkt )

]
. (4)

In the rest of this paper, we denote the initial state ρ̂(0) and the final state ρ̂(t) at time t as ρ̂ in

and ρ̂out, where t stands for the transmission time during which the system passes through the
linear dissipative channel.
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For the Wigner function W(z1, z2; t) of a two-mode bosonic state, one can obtain the
input–output relation from equations (3) and (4)

Wout(z1, z2) =
∫

d2z′
1

π

∫
d2z′

2

π
G1(z1|z′

1; t)G2(z2|z′
2; t)Win(z

′
1, z

′
2). (5)

This relation determines the quantum channel for any two-mode bosonic state. If κ1 = κ2 and
n̄

(th)
1 = n̄

(th)
2 , the quantum channel is symmetric and otherwise it is asymmetric. The statistical

properties of a quantum state ρ̂ can be derived from the characteristic function defined by
C(α) = Tr

[
eαâ†−α∗â ρ̂

]
. Since the characteristic function is the Fourier transformation of the

Wigner function, the characteristic function Cout(α1, α2) of the two-mode quantum state at the
channel output is obtained from equations (4) and (5)

Cout(α1, α2) =
∫

d2z1

π

∫
d2z1

π
Wout(z1, z2; t) eα1z

∗
1−α∗

1z1 eα2z
∗
2−α∗

2z2

= G1(α1; t)G2(α2; t)Cin(α1 e−κ1t , α2 e−κ2t ) (6)

with

Gk(α; t) = exp[−Nk(t)|α|2] (7)

Nk(t) = (
n̄

(th)
k + 1

2

)
(1 − e−2κkt ) (8)

where Cin(α1, α2) is the characteristic function of the initial state ρ̂ in = ρ̂(0). When the
transmission times t1 and t2 of the two modes are different, it is easy to see that equation (6)
is generalized to

Cout(α1, α2) = G1(α1; t1)G2(α2; t2)Cin(α1 e−κ1t1 , α2 e−κ2t2). (9)

This result will be used for investigating the inseparability of bipartite Gaussian states sent
through the symmetric and asymmetric linear dissipative channels.

2.2. Quantum channel equivalent to quantum teleportation

Quantum teleportation is a novel method for transmitting an unknown quantum state by
means of classical communication with the assistance of quantum entanglement. Hence it is
equivalent to the quantum channel. When continuous variable quantum teleportation with the
standard protocol [5, 15–18] is performed by sharing a bipartite quantum state �̂k , any input
state ρ̂ in to be teleported is transformed into the output state ρ̂out which is related to the input
state ρ̂ in by [15–18]

ρ̂out =
∫

d2α

π
Pk(α)D̂(α)ρ̂ inD̂

†(α) (10)

with

Pk(α) =
∫

d2β

π
W�k

(β∗ − α∗, β) (11)

where W�k
(z1, z2) is the Wigner function of the bipartite quantum state �̂k . The standard

protocol implies that the sender performs a simultaneous measurement of position and
momentum and the receiver applies the displacement operator, the amplitude of which
is determined by the measurement outcome obtained from the sender via a classical
communication channel.

We assume that the bipartite quantum state �̂k is the Gaussian state which is called the
mixed EPR state [19, 20], the characteristic function of which is the Gaussian distribution

C�k
(z1, z2) = exp

(− 1
2 z†Vkz

)
(12)
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where z = (z∗
1, z1, z

∗
2, z2)

† and the Hermitian matrix Vk is given by

Vk =




n̄k + 1
2 0 0 m̄k

0 n̄k + 1
2 m̄∗

k 0
0 m̄k n̄k + 1

2 0
m̄∗

k 0 0 n̄k + 1
2


 . (13)

The parameters n̂k and m̄k must satisfy the inequality n̄k(n̄k + 1) � |m̄|2 due to the uncertainty
relation. In this case, the function P(α) given by equation (11) becomes

P(α) = 1

�n̄km̄k

exp

(
− |α|2

�n̄km̄k

)
(14)

with positive parameter �n̄km̄k
= 2n̄k + m̄k + m̄∗

k + 1. Hence it is found that continuous variable
quantum teleportation reduces to the quantum thermalizing channel

ρ̂out = 1

�n̄km̄k

∫
d2α

π
e−|α|2/�n̄k m̄k D̂(α)ρ̂ inD̂

†(α). (15)

This channel is also derived when the external environment randomly modulates the complex
amplitude of the quantum state and the basic properties have been investigated in detail [21].
Using the Wigner functions Win(z) and Wout(z) of the input and output states, one can obtain
the input–output relation of the Wigner function

Wout(z) =
∫

d2z′

π
Gk(z|z′)Win(z

′) (16)

with

Gk(z|z′) = 1

�n̄km̄k

exp

(
−|z − z′|2

�n̄km̄k

)
. (17)

We suppose that quantum teleportation of a two-mode state is performed, where each
mode is teleported by means of the bipartite Gaussian state �̂k characterized by equations (12)
and (13). In this case, the Wigner function Wout(z1, z2) of the output state is related to the
Wigner function Win(z1, z2) of the input state by

Wout(z1, z2) =
∫

d2z′
1

π

∫
d2z′

2

π
G1(z1|z′

1)G2(z2|z′
2)Win(z

′
1, z

′
2). (18)

Here it is obvious that if �̂1 = �̂2, the quantum channel is symmetric and otherwise it is
asymmetric. Using the characteristic functions Cin(α1, α2) and Cout(α1, α2) of the input and
output states, one can obtain the relation from equation (18)

Cout(α1, α2) = G1(α1)G2(α2)Cin(α1, α2) (19)

with Gk(α) = exp
(−�n̄km̄k

|α|2). When the kth mode of the input state is teleported τk times
by means of the identical bipartite Gaussian states �̂k [23], the input–output relation for the
Wigner functions is generalized to

Wout(z1, z2) =
∫

d2z′
1

π

∫
d2z′

2

π
G1(z1|z′

1;µ1)G2(z2|z′
2;µ2)Win(z

′
1, z

′
2) (20)

with

Gk(z|z′;µk) = 1

τk�n̄km̄k

exp

(
−|z − z′|2

τk�n̄km̄k

)
. (21)

The characteristic function of the output state is given by

Cout(α1, α2) = G1(α1; τ1)G2(α2; τ2)Cin(α1, α2) (22)
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with

Gk(α; τ) = exp[−Nk(τ )|α|2] (23)

Nk(τ ) = τ�n̄km̄k
= τ(2n̄k + m̄k + m̄∗

k + 1). (24)

It is obvious from equations (6) and (22) that both the linear dissipative channel and the
quantum teleportation channel transform any Gaussian state into another Gaussian state. Thus
these quantum channels belong to the set of Gaussian channels. The properties of Gaussian
channels have been investigated in detail [22].

3. Inseparability of output Gaussian states

This section investigates the inseparability of the output states of the linear dissipative channels
and the quantum teleportation channels when the input states are bipartite Gaussian states ρ̂G.
First we briefly summarize the necessary and sufficient condition for the separability of
bipartite Gaussian states. The characteristic function of an arbitrary bipartite Gaussian state
can be written as [20]

Cin(z1, z2) = Tr
[
ρ̂G

(
ez1â

†
1−z∗

1 â1 ⊗ ez2â
†
2−z∗

2 â2
)] = exp

(− 1
2 z†Vinz

)
(25)

where z = (z∗
1, z1, z

∗
2, z2)

† and the Hermitian 4 × 4 matrix Vin is given by

Vin =
(

V11 V12

V†
12 V22

)
(26)

and the 2 × 2 matrices Vkk (k = 1, 2) and V12 in Vin are given by

Vkk =
(

n̄
(in)
k + 1

2 m̄
(in)
k

m̄
(in)∗
k n̄

(in)
k + 1

2

)
V12 =

(
m̄(in)

s m̄(in)
c

m̄(in)∗
c m̄(in)∗

s

)
. (27)

Here the parameters are n̄
(in)
k = 〈

â
†
kâk

〉
, m̄

(in)
k = −〈

â2
k

〉
, m̄(in)

s = 〈
â1â

†
2

〉
and m̄(in)

c = −〈â1â2〉.
In equation (25), we have ignored the linear term with respect to z in the exponential since it
is irrelevant to the inseparability of the bipartite Gaussian state. When the quantum channels
are the linear dissipative ones, the characteristic function Cout(z1, z2) of the output state is
obtained from equations (9) and (25)

Cout(z1, z2) = exp
(− 1

2 z†Voutz
)

(28)

with

Vout =
(

N1(t1)I + V11 e−2κ1t1 V12 e−κ1t1−κ2t2

V†
12 e−κ1t1−κ2t2 N2(t2)I + V11 e−2κ2t2

)
(29)

where I stands for a 2 × 2 identity matrix and Nk(t) is given by equation (8). On the other hand,
for the quantum teleportation channels described by equation (22), the matrix Vout becomes

Vout =
(N1(τ1)I + V11 V12

V†
12 N2(τ2)I + V11

)
(30)

where Nk(τk) is given by equation (24). Furthermore, the necessary and sufficient condition
for the output Gaussian state to be inseparable is given by [19, 20, 24, 25]

T1VoutT1 + 1
2 E < 0 (31)
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where the matrices T1 are defined by

T1 =




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


 E =




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


 . (32)

The matrix T1 represents the partial transposition with respect to the mode 1.
We suppose that the input bipartite Gaussian state is the mixed EPR state which includes

a noisy two-mode squeezed-vacuum state as a special case, where the matrices Vkk and V12

are given respectively by

Vkk =
(

n̄
(in)
k + 1

2 0

0 n̄
(in)
k + 1

2

)
V12 =

(
0 m̄(in)

m̄(in)∗ 0

)
(33)

where the uncertainty relation implies that the inequality n̄
(in)
k

(
n̄

(in)
k + 1

)
� |m̄(in)|2 (k = 1, 2)

holds. In this case, it is found that the input bipartite Gaussian state is inseparable if and only
if the parameters n̄

(in)
k (k = 1, 2) and m̄(in) satisfy the inequality n̄

(in)
1 n̄

(in)
2 < |m̄(in)|2. Moreover

the necessary and sufficient condition that the output bipartite Gaussian state of the linear
dissipative channels become inseparable is obtained from equations (29) and (31)[(

n̄
(th)
1 − n̄

(in)
1

)
(1 − e−2κ1t1) + n̄

(in)
1

][(
n̄

(th)
2 − n̄

(in)
2

)
(1 − e−2κ2t2) + n̄

(in)
2

]
< |m̄(in)|2 e−2(κ1t1+κ2t2).

(34)

On the other hand, for the quantum teleportation channels, the necessary and sufficient
condition of the inseparability of the output Gaussian state is obtained from equations (30)
and (31) [

�n̄1m̄1τ1 + n̄(in)
] [

�n̄2m̄2τ2 + n̄(in)
]

< |m̄(in)|2. (35)

In the rest of this section, we will investigate the properties of inequalities (34) and (35) for
the symmetric and asymmetric Gaussian channels and will show how the quantum channels
affect the entanglement of bipartite Gaussian states.

3.1. Symmetric and asymmetric linear dissipative channels

Using inequality (34), we investigate the inseparability of the bipartite Gaussian state
transmitted through the symmetric and asymmetric linear dissipative channels. We find
the most useful setup that makes it possible for distant users to share the inseparable Gaussian
state. We suppose that the noisy environments are equal for the two modes (n̄(th)

1 = n̄
(th)
2 ≡ n̄(th)

and κ1 = κ2 ≡ κ) while the transmission times t1 and t2 are different. Then inequality (34)
can be rewritten as

(n̄(th) e2κt1 + �n̄1)(n̄
(th) e2κt2 + �n̄2) < |m̄(in)|2 (36)

where the effects of the linear dissipative channels are included on the left-hand side which is
denoted as

F(t1, t2) = (n̄(th) e2κt1 + �n̄1)(n̄
(th) e2κt2 + �n̄2) (37)

with �n̄k = n̄
(in)
k − n̄(th) (k = 1, 2). To investigate the influences of the quantum channels on

the inseparability of the output Gaussian state, we obtain the maximum and minimum values
Fmax and Fmin of the function F(t1, t2) under the constraint that the total transmission time
t = t1 + t2 is fixed. This is equivalent to finding the best and worst places of the generator of
the initial Gaussian state between the distant users who would like to share it. Straightforward
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calculation provides the following result:

(i) if n̄
(in)
1 < n̄(th) < n̄

(in)
2 ,

Fmin = F1 at (t1, t2) = (0, t) (38)

Fmax = F2 at (t1, t2) = (t, 0). (39)

(ii) if n̄
(in)
1 > n̄(th) > n̄

(in)
2 ,

Fmin = F2 at (t1, t2) = (t, 0) (40)
Fmax = F1 at (t1, t2) = (0, t). (41)

(iii) if n̄
(in)
1 � n̄(th), n̄

(in)
2 � n̄(th) and �n̄1/�n̄2 > e2κt ,

Fmin = F2 at (t1, t2) = (t, 0) (42)
Fmax = F1 at (t1, t2) = (0, t). (43)

(iv) if n̄
(in)
1 < n̄(th), n̄

(in)
2 < n̄(th) and �n̄1/�n̄2 > e2κt ,

Fmin = F1 at (t1, t2) = (0, t) (44)
Fmax = F2 at (t1, t2) = (t, 0). (45)

(v) if n̄
(in)
1 � n̄(th), n̄

(in)
2 � n̄(th) and �n̄1/�n̄2 � e2κt ,

Fmin = F0 at (t1, t2) = (t0, t − t0) (46)

Fmax =
{

F1 at (t1, t2) = (0, t) for n̄
(in)
1 � n̄

(in)
2

F2 at (t1, t2) = (t, 0) for n̄
(in)
1 < n̄

(in)
2 .

(47)

(vi) if n̄
(in)
1 < n̄(th), n̄

(in)
2 < n̄(th) and �n̄1/�n̄2 � e2κt ,

Fmin =
{

F2 at (t1, t2) = (t, 0) for n̄
(in)
1 � n̄

(in)
2

F1 at (t1, t2) = (0, t) for n̄
(in)
1 < n̄

(in)
2

(48)

Fmax = F0 at (t1, t2) = (t0, t − t0). (49)

The parameters appearing in (i)–(vi) are given by

F1 = n̄
(in)
1 (n̄(th) e2κt + �n̄2) (50)

F2 = (n̄(th) e2κt + �n̄1)n̄
(in)
2 (51)

F0 = (
n̄(th) eκt +

√
�n̄1�n̄2

)2
(52)

t0 = 1

2
t +

1

4κ
ln

(
�n̄1

�n̄2

)
. (53)

For the distant users to share the inseparable Gaussian state, the inequality F(t1, t2) < |m̄(in)|2
must be satisfied. For this purpose, the generator of the initial bipartite Gaussian state should
be placed at the site where the function F(t1, t2) takes the minimum value Fmin. In the
case (v), the generator of the initial Gaussian state should be placed between the distant users
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Environment

User BUser A User BUser A

ρin ρin

Environment

System A System B

Figure 1. Schematic representation of the symmetric and asymmetric systems (system A and
system B) interacting with the noisy environment.

(see system A in figure 1) while in the other cases, it should be placed at the site of the user
(see system B in figure 1).

To obtain a better understanding of the results, we suppose that the initial Gaussian state
to be shared is symmetric. Since the equality n̄

(in)
1 = n̄

(in)
2 (≡n̄(in)) holds in this case, the

parameters F0, F1, F2 and t0 become

F1 = F2 = n̄(in)[n̄(th)(e2κt − 1) + n̄(in)] (54)

F0 = [n̄(th)(eκt − 1) + n̄(in)]2 (55)

t0 = 1
2 t. (56)

Then we obtain the minimum and maximum values Fmin and Fmax of the function F(t1, t2):

(i) if n̄(in) � n̄(th),

Fmin = F0 at t1 = t2 = t/2 (57)

Fmax = F1 = F2 at (t1, t2) = (0, t) or (t, 0). (58)

(ii) If n̄(in) < n̄(th),

Fmin = F1 = F2 at (t1, t2) = (0, t) or (t, 0) (59)

Fmax = F0 at t1 = t2 = t/2. (60)

Hence the necessary and sufficient condition that the distant users can share the inseparable
Gaussian state is given by

[n̄(th)(eκt − 1) + n̄(in)]2 < |m̄(in)|2 (61)

for n̄(in) � n̄(th) and

n̄(in)[n̄(th)(e2κt − 1) + n̄(in)] < |m̄(in)|2 (62)

for n̄(in) < n̄(th). In particular, since the equality |m̄(in)|2 = n̄(in)(n̄(in) + 1) holds when the
initial Gaussian state is pure, inequality (61) yields

2n̄(th)(eκt − 1) < 1 n̄(in) >
[n̄(th)(eκt − 1)]2

1 − 2n̄(th)(eκt − 1)
(n̄(in) � n̄(th)) (63)

and inequality (62) becomes

n̄(th)(e2κt − 1) < 1 (n̄(in) < n̄(th)). (64)

Therefore when n̄(in) < n̄(th), the distant users can share the inseparable Gaussian state if
inequality (64) is satisfied, where the generator of the initial Gaussian state must be placed
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at the site of the user. On the other hand, when n̄(in) � n̄(th), the inseparable Gaussian state
can be shared if inequality (63) is satisfied, where the generator of the initial Gaussian state
must be placed at the mid point between the distant users. The results imply that for bipartite
Gaussian states which satisfy n̄(th) � n̄(in) < |m̄(in)|, the decoherence of the entanglement
caused by the quantum channels becomes minimum when the quantum channels equally
affect the two modes. On the other hand, for bipartite Gaussian state which satisfy n̄(in) < n̄(th)

and n̄(in) < |m̄(in)|, it becomes minimum when only one of the two modes is affected by the
quantum channel and the other remains unchanged. Note that the total transmission time is
equal in both cases.

3.2. Symmetric and asymmetric quantum teleportation channels

To investigate the influences of symmetric and asymmetric quantum teleportation channels
on the inseparability of the Gaussian bipartite state, we denote the left-hand side of
inequality (35) as

F(τ1, τ2) = (
�n̄1m̄1τ1 + n̄

(in)
1

)(
�n̄2m̄2τ2 + n̄

(in)
2

)
. (65)

We assume that for the distant users to share the bipartite Gaussian state, the quantum
teleportation must be performed totally τ = τ1 + τ2 times. We obtain the maximum and
minimum values Fmax and Fmin of the function F(τ1, τ2) under the constraint of τ = τ1 + τ2.
Straightforward calculation yields following results:

(i) if
∣∣n̄(in)

1

/
�n̄1m̄1 − n̄

(in)
2

/
�n̄2m̄2

∣∣ � τ ,

Fmax = F0 at (τ1, τ2) = (τ0, τ − τ0) (66)

Fmin = F1 at




(τ1, τ2) = (0, τ ) for
n̄

(in)
1

�n̄1m̄1

� n̄
(in)
2

�n̄2m̄2

(τ1, τ2) = (τ, 0) for
n̄

(in)
1

�n̄1m̄1

>
n̄

(in)
2

�n̄2m̄2

(67)

(ii) If
∣∣n̄(in)

1

/
�n̄1m̄1 − n̄

(in)
2

/
�n̄2m̄2

∣∣ > τ ,

aFmax = F2 at




(τ1, τ2) = (0, τ ) for
n̄

(in)
1

�n̄1m̄1

− n̄
(in)
2

�n̄2m̄2

� τ

(τ1, τ2) = (τ, 0) at
n̄

(in)
2

�n̄2m̄2

− n̄
(in)
1

�n̄1m̄1

> τ

(68)

Fmin = F1 at




(τ1, τ2) = (τ, 0) for
n̄

(in)
1

�n̄1m̄1

− n̄
(in)
2

�n̄2m̄2

� τ

(τ1, τ2) = (0, τ ) at
n̄

(in)
2

�n̄2m̄2

− n̄
(in)
1

�n̄1m̄1

> τ.

(69)

The parameters appearing in (i) and (ii) are given by

F0 = 1

4
�n̄1m̄1�n̄2m̄2

(
τ +

n̄
(in)
1

�n̄1m̄1

+
n̄

(in)
2

�n̄2m̄2

)2

− �n̄1m̄1�n̄2m̄2ε
2 (70)
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User BUser A User BUser A

ρin ρin

System A System B

L telL tel L tel L tel

Figure 2. Schematic representation of the symmetric and asymmetric systems (system A and
system B) with the quantum teleportation channels. In the figure, Ltel stands for the quantum
teleportation channel.

F1 = τ n̄
(in)
1 n̄

(in)
2

(
1

τ
+ min

[
�n̄1m̄1

n̄
(in)
1

,
�n̄2m̄2

n̄
(in)
2

])
(71)

F2 = τ n̄
(in)
1 n̄

(in)
2

(
1

τ
+ max

[
�n̄1m̄1

n̄
(in)
1

,
�n̄2m̄2

n̄
(in)
2

])
(72)

with

ε = τ0 − 1

2

(
τ +

n̄
(in)
2

�n̄2m̄2

− n̄
(in)
1

�n̄1m̄1

)
(73)

τ0 = int

[
1

2

(
τ +

n̄
(in)
2

�n̄2m̄2

− n̄
(in)
1

�n̄1m̄1

)]
(74)

where the symbol int[x] stands for the nearest integer to x and thus the parameter ε satisfies the
inequality |ε| � 1/2. These results together with inequality (35) show that for distant users
to share the inseparable Gaussian state, only one mode of the initial Gaussian state should be
sent by means of quantum teleportation and the other mode should remain unchanged at the
site of the user. For the quantum teleportation channels, it is found that system B in figure 2
is superior to system A for sharing the inseparable Gaussian state.

We suppose that the Gaussian bipartite states used for quantum teleportation are identical
and the initial Gaussian state is symmetric. In this case, we have �n̄1m̄1 = �n̄2m̄2 ≡ �n̄m̄

and n̄
(in)
1 = n̄

(in)
2 ≡ n̄(in). Furthermore we assume that τ is an even integer for the sake of

simplicity. Then the maximum value Fmax of the function F(τ1, τ2) is attained when the
generator of the initial Gaussian state is placed at the mid point between the distant users,
where the maximum value Fmax is given by Fmax = (n̄(in) + τ�n̄m̄/2)2. On the other hand, the
minimum value Fmin is attained when the generator is placed at the site of the user, where Fmin

is given by Fmin = n̄(in)(n̄in + τ�n̄m̄). Therefore the condition for the distant users to share the
inseparable Gaussian state is given by n̄(in)(n̄(in) +τ�n̄m̄) < |m̄(in)|2, where the generator of the
initial Gaussian state must be held by one of the distant users. In particular, when the initial
Gaussian state is pure, where the inequality |m̄(in)|2 = n̄(in)(n̄(in) + 1) holds, we obtain the
condition τ�n̄m̄ < 1 which does not depend on the parameter n̄(in) of the initial Gaussian state.
When the bipartite Gaussian states used for the quantum teleportation are separable, where
the inequality n̄ � |m̄| holds, we obtain the inequality �n̄m̄ � 1 and thus the inseparability
condition is not satisfied. This gives the trivial fact that the entanglement is indispensable for
teleporting the quantum nature.
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4. Quantum communication in noisy quantum channels

4.1. Continuous variable quantum teleportation

This section investigates the properties of continuous variable quantum teleportation with the
standard protocol [5, 15–18] when the sender and receiver share a two-mode squeezed-vacuum
state by means of the symmetric or asymmetric quantum channels. When the sender teleports
an unknown quantum ρ̂ in, the receiver obtains the quantum state ρ̂out which is related to the
input state ρ̂ in by [17, 18]

ρ̂out =
∫

d2α

π
P (α)D̂(α)ρ̂ inD̂

†(α) (75)

with

P(α) =
∫

d2β

π
W(β∗ − α∗, β) (76)

where W(α, β) is the Wigner function of the bipartite quantum state shared by the sender
and receiver. The Wigner function Wr(z1, z2) of a two-mode squeezed-vacuum state
|�r〉 = er(â

†
1â

†
2−â1â2)|0, 0〉 with the squeezing parameter r > 0 is given by

Wr(z1, z2) = 4 exp[−2(|z1|2 + |z2|2) cosh 2r + 2(z1z2 + z∗
1z

∗
2) sinh 2r]. (77)

We suppose that the mode 1 (2) of the two-mode squeezed-vacuum state is sent to the sender
(the receiver) through the linear dissipative channel, the transmission time of which is τ1

(τ2). Then using the function Gk(z|z′; t) given by equation (4), we can calculate the Wigner
function W(z1, z2) of the bipartite quantum state shared by the sender and receiver,

W(z1, z2) =
∫

d2z′
1

π

∫
d2z′

2

π
G1(z1|z′

1; τ1)G2(z2|z′
2; τ2)Wr(z

′
1, z

′
2)

= 4

σS

exp

[
−σ2

σS

|z1|2 − σ1

σS

|z2|2 +
λ

σS

(z1z2 + z∗
1z

∗
2)

]
(78)

where the parameters σS, σ1, σ2 and λ are given by

σS = 1
2

(
σ +

1 σ−
2 + σ−

1 σ +
2

)
(79)

σk = σ +
k + σ−

k (80)

λ =
√(

σ +
1 − σ−

1

)(
σ +

2 − σ−
2

)
(81)

with

σ±
k = (

2n̄
(th)
k + 1

)
(1 − e−2κkτk ) + e±2r e−2κkτk . (82)

Substituting equation (78) into equation (76), we obtain

P(α) = 1

σ
exp

(
−|α|2

σ

)
(83)

with

σ =
(

n̄
(th)
1 +

1

2

)
(1 − e−2κ1τ1) +

(
n̄

(th)
2 +

1

2

)
(1 − e−2κ1τ1)

+ e−2r

(
e−κ1τ1 + e−κ2τ2

2

)2

+ e2r

(
e−κ1τ1 − e−κ2τ2

2

)2

. (84)
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Then the input–output relation of the quantum teleportation is given by

ρ̂out = 1

σ

∫
d2α

π
e−|α|2/σ D̂(α)ρ̂ inD̂

†(α). (85)

In this case, the s-parametrized phase-space quasi-distribution functions F (s)
in (α) and F

(s)
out (α)

[13, 14] which represent the quantum states ρ̂ in and ρ̂out are related to each other by
F

(s)
out (α) = F (s+2σ)

in (α). When a coherent state |α〉 is teleported, the fidelity Fc = 〈α|ρ̂ in|α〉 is
calculated to be

Fc = 1

1 + σ
. (86)

It is important to note that the parameter σ given by equation (84) does not decrease
monotonically with respect to the squeezing parameter r if the quantum channels are
asymmetric. In fact, the parameter σ takes the minimum value σmin at r = r0, where r0

and σmin are given respectively by

r0 = 1

2
ln

∣∣∣∣ e−κ1τ1 + e−κ2τ2

e−κ1τ1 − e−κ2τ2

∣∣∣∣ (87)

and

σmin =
(

n̄
(th)
1 +

1

2

)
(1 − e−2κ1τ1) +

(
n̄

(th)
2 +

1

2

)
(1 − e−2κ1τ1) +

1

2
|e−2κ1τ1 − e−2κ2τ2 |. (88)

For the symmetric channels, the minimum value σmin = (2n̄(th) + 1)(1 − e−2κt ) is attained at
the limit r → ∞. In particular, when the noisy environments are in their vacuum states, that
is, n̄

(th)
1 = n̄

(th)
2 = 0, we obtain

σmin = 1 − min[e−2κ1τ1 , e−2κ2τ2 ]. (89)

It is found from the result that when the linear dissipative channels are asymmetric, the
performance of the continuous variable quantum teleportation with the standard protocol is
deteriorated by the strong squeezing (r > r0) while it is improved for the symmetric quantum
channels.

When the sender and receiver share the two-mode squeezed-vacuum via the quantum
teleportation channels, the Wigner function W(z1, z2) of the bipartite quantum state shared by
them is calculated to be

W(z1, z2) =
∫

d2z′
1

π

∫
d2z′

2

π
G1(z1|z′

1; τ1)G2(z2|z′
2; τ2)Wr(z

′
1, z

′
2)

= 4

δS

exp

[
− δ2

δS

|z1|2 − δ1

δS

|z2|2 +
ε

δS

(z1z2 + z∗
1z

∗
2)

]
(90)

where the function Gk(z|z; τk) is given by equation (21) and the parameters δS, δ1 and δ2 are
defined by

δS = 1 + 2(τ1�n̄1m̄1 + τ2�n̄2m̄2) cosh 2r + 4τ1τ2�n̄1m̄1�n̄2m̄2 (91)

δk = 2 cosh 2r + 4τk�n̄km̄k
(92)

ε = 2 sinh 2r. (93)

In this case, the function P(α) given by equation (76) becomes

P(α) = 1

δ
exp

(
−|α|2

δ

)
(94)
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coding:

ρin

α

L 2

L 1

Sender
Receiver

βmeasurement:

Figure 3. Schematic representation of the continuous variable quantum dense coding system,
where L̂k (k = 1, 2) stands for the quantum channels under the influence of the noisy environment
and induced by the quantum teleportation, and α and β represent the encoded symbol and the
measurement outcome.

with

δ = e−2r + τ1�n̄1m̄1 + τ2�n̄2m̄2 . (95)

The fidelity Fc = 〈α|ρ̂ in|α〉 of the coherent state |α〉 is given by Fc = 1/(1 + δ). It is
found from equation (95) that in contrast to the case for the linear dissipative channels, the
performance of quantum teleportation improves as the squeezing is made stronger, regardless
to whether the quantum channels are symmetric or not.

4.2. Continuous variable quantum dense coding

We next consider the continuous variable quantum dense coding by means of a two-mode
squeezed-vacuum state [26, 27] under the influences of the symmetric and asymmetric quantum
channels. We assume that the generator of a two-mode squeezed-vacuum state is placed at
the sender site. The sender encodes the information by applying the displacement operator
D̂(α) on one of the two modes, and the two modes are sent to the receiver through the
linear dissipative channels or quantum teleportation quantum channels. After receiving the
encoded state, the receiver performs a simultaneous measurement of position and momentum
on the two modes, where the measurement result can be represented by the complex parameter
β = (x + ip)/

√
2. The quantum dense coding system considered here is depicted in figure 3.

When the sender encodes the information α and the transmission time of the two modes
passing through the linear dissipative channels is t, the conditional probability P(β|α) that the
receiver obtains the measurement outcome β is given by

P(β|α) = 1

πσt

exp

(
−|β − α e−κ1t |2

σt

)
(96)

with

σt =
(

n̄
(th)
1 +

1

2

)
(1 − e−2κ1t ) +

(
n̄

(th)
2 +

1

2

)
(1 − e−2κ1t )

+ e−2r

(
e−κ1t + e−κ2t

2

)2

+ e2r

(
e−κ1t − e−κ2t

2

)2

. (97)

When the prior probability Pin(α) that the sender encodes α is the Gaussian distribution

Pin(α) = 1

πn̄(in)
exp

(
−|α|2

n̄(in)

)
(98)

the output probability Pout(β) that the receiver obtains β as the measurement outcome is given
by

Pout(β) =
∫

d2αP (β|α)Pin(α) = 1

π [σt + n̄(in) e−2κ1t ]
exp

(
− |β|2

σt + n̄(in) e−2κ1t

)
. (99)
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Then the mutual information of the quantum dense coding system is calculated to be

I =
∫

d2α

∫
d2βPin(α)P (β|α) log

[
P(β|α)

Pout(β)

]
= log

(
1 +

n̄(in) e−2κ1t

σt

)
. (100)

It is found from equations (97) and (100) that when the squeezing parameter r takes the value
r0 = (1/2) ln |(e−κ1t + e−κ2t )/(e−κ1t − e−κ2t )|, the rate of the information transmission in the
quantum dense coding system becomes maximum.

On the other hand, when each mode of the encoded two-mode squeezed-vacuum state is
transmitted through the quantum teleportation channel, the condition probability P(β|α) is
given by

P(β|α) = 1

πδτ

exp

(
−|β − α|2

δτ

)
(101)

with

δτ = e−2r + τ(�n̄1m̄1 + �n̄2m̄2). (102)

In this case, the mutual information of the quantum dense coding system becomes

I = log

(
1 +

n̄in)

δτ

)
(103)

which means that the information transmission rate increases monotonically as the value of
the squeezing parameter r is increased.

5. Concluding remarks

We have investigated the influences of the linear dissipative channel and the quantum
teleportation channels on quantum entanglement. In particular, we have focused our attention
on the asymmetry of the quantum channels. When a bipartite Gaussian state is shared through
the linear dissipative channels, the asymmetric or symmetric channel is suitable for sharing the
entanglement, depending on the channel parameters and the initial Gaussian state. On the other
hand, when the quantum teleportation channel is applied for sharing the bipartite quantum
state, the asymmetric channel is always better than the symmetric channel. Furthermore, we
have investigated quantum teleportation and quantum dense coding of continuous variables,
where the two-mode squeezed-vacuum state is used as the entanglement resource. When
the two-mode squeezed-vacuum state is shared by means of the linear dissipative channels,
increasing the squeezing makes the fidelity higher in quantum teleportation and the information
rate greater in quantum dense coding for the symmetric channels while there is the optimum
value of the squeezing for the asymmetric quantum channels. If the squeezing parameter
takes values greater than the optimum one, quantum teleportation and quantum dense coding
are deteriorated. On the other hand, when the two-mode squeezed-vacuum state is shared
by means of the quantum teleportation channels, increasing the squeezing always makes the
fidelity higher and the information rate greater. In this paper, we have considered the linear
dissipative channel and the quantum teleportation channel for bosonic systems. It is important
to investigate the influences of asymmetric quantum channels on the quantum entanglement
of finite dimensional systems.
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